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Chapter Three: Sinusoidal Steady State Analysis 
 

3.1 Sinusoidal analysis and phasor 
Consider a sinusoidally varying voltage 

𝑣(𝑡)  =  𝑉  𝑠𝑖𝑛𝜔𝑡 
shown graphically in Figs. 3.1a and b. The amplitude of the sine wave is Vm, and the argument is ωt. 
The radian frequency, or angular frequency, is ω. In Fig. 3.1a, Vm sinωt is plotted as a function of the 
argument ωt, and the periodic nature of the sine wave is evident. The function repeats itself every 2π 
radians, and its period is therefore 2π radians. In Fig. 3.1b, Vm sinωt is plotted as a function of t and 
the period is now T. A sine wave having a period T must execute 1/T periods each second; its 
frequency f is 1/T hertz, abbreviated Hz. Thus, 

𝑓 =  
1

𝑇
 

and since ωT = 2π 
we obtain the common relationship between frequency and radian frequency, 
  ω = 2πf 

 
Fig. 3.1: The sinusoidal function v(t) = Vm sin ωt is plotted (a) versus ωt and (b) versus t. 

A more general form of the sinusoid, 
v(t) = Vm sin(ωt + θ)    [1] 

includes a phase angle θ in its argument. Equation [1] is plotted in Fig. 3.2 as a function of ωt. Since 
corresponding points on the sinusoid Vm sin(ωt + θ) occur θ rad, or θ/ω seconds, earlier, we say that 

 Vm sin(ωt + θ) leads Vm sinωt by θ rad.  

 Vm sin ωt  lags Vm sin(ωt + θ) by θ rad. 
In either case, leading or lagging, we say that the sinusoids are out of phase. If the phase angles are 
equal, the sinusoids are said to be in phase. 
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Fig. 3.2: The sine wave Vm sin(ωt + θ) leads Vm sin ωt by θ rad. 

The complex quantities are usually written in polar form rather than exponential form in order to 
achieve a slight additional saving of time and effort. For example, a source voltage 

v(t) = Vm cosωt = Vm cos(ωt + 0◦) 
we now represent in complex form as 

v(t) = Vm 0◦ 
and its current response 

i(t) = Im cos(ωt + ) 
becomes 

i(t) = Im  
This abbreviated complex representation is called a phasor. 
A real sinusoidal current 

i (t) = Im cos(ωt + ) = Re{Im ej(ωt+)} 
We then represent the current as a complex quantity by dropping the instruction Re{}, thus adding an 
imaginary component to the current without affecting the real component; further simplification is 
achieved by suppressing the factor ejωt :  

I = Imej 
and writing the result in polar form: 

I = Im  
The process of returning to the time domain from the frequency domain is exactly the reverse of the 
previous sequence. Thus, given the phasor voltage 

V = 115−45◦   volts 
and the knowledge that ω = 500 rad/s, we can write the time-domain equivalent directly: 

v(t) = 115 cos(500t − 45◦)    volts 
If desired as a sine wave, v(t) could also be written  

v(t) = 115 sin(500t + 45◦)     volts 
We can proceed to our simplification of sinusoidal steady-state analysis by establishing the 
relationship between the phasor voltage and phasor current for each of the three passive elements. 
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Fig. 3.3. 

 The Resistor 
The resistor provides the simplest case. In the time domain, as indicated by Fig. 3.3a, the defining 
equation is 

v(t) = R i(t) 
Now let us apply the complex voltage 

v(t) = Vm ej(ωt+θ) = Vm cos(ωt + θ) + jVm sin(ωt + θ)  [1] 
and assume the complex current response 

i(t) = Im ej(ωt+) = Im cos(ωt + ) + jIm sin(ωt + )   [2] 
so that 

Vm ej(ωt+θ) = R i(t) = R Im ej(ωt+) 
Dividing throughout by ejωt , we find 

Vm ejθ = R Im ej 
or, in polar form, 

Vm θ = R Im 

But Vm θ and Im  merely represent the general voltage and current phasors V and I. Thus, 
V = R I    [3] 

The voltage-current relationship in phasor form for a resistor has the same form as the relationship 
between the time-domain voltage and current. The defining equation in phasor form is illustrated in 

Fig. 3.3b. The angles θ and  are equal, so that the current and voltage are always in phase. 
As an example of the use of both the time-domain and frequency domain relationships, let us assume 
that a voltage of 8 cos(100t − 50◦) V is across a 4 Ω resistor. Working in the time domain, we find 
that the current must be 

i (t) = v(t) R = 2 cos(100t − 50◦)  A 

The phasor form of the same voltage is 8 −50◦ V, and therefore 

I = V R = 2 −50◦    A 
 The Inductor 

Let us now turn to the inductor. The time-domain representation is shown in Fig. 3.4a, and the 
defining equation, a time-domain expression, is 

v(t) = L di(t)/dt  [1] 
After substituting the complex voltage equation and complex current 
equation in Eq. [1], we have 

Vm ej(ωt+θ) = L d(Im ej(ωt+))/dt 
Taking the indicated derivative: 

Vm ej(ωt+θ) = jωL Im ej(ωt+) 
and dividing through by e jωt : 

Vm ejθ = jωL Im ej 
we obtain the desired phasor relationship 

V = jωL I    [2] 
The time-domain differential equation [1] has become the algebraic equation [2] in the frequency 
domain. The phasor relationship is indicated in Fig. 3.4b. Note that the angle of the factor jωL is 
exactly +90◦ and that I must therefore lag V by 90° in an inductor. 

Fig. 3.4  



Electric Circuits Analysis   2nd Year 

 
 

 
59 | Electrical Engineering Department/Basrah University      Dr. Mofeed Turky Rashid 
 
 

 The Capacitor 
The final element to consider is the capacitor. The time-domain current voltage relationship is 

i(t) = C dv(t)/dt 
The equivalent expression in the frequency domain is obtained once 
more by letting v(t) and i (t) be the complex quantities, taking the 
indicated derivative, suppressing ejωt , and recognizing the phasors V 
and I. Doing this, we find 

I = jωC V   [2] 
Thus, I leads V by 90° in a capacitor.  
The time-domain and frequency-domain representations are 
compared in Fig. 3.5a and b.  
TABLE 10.1 Comparison of Time-Domain and Frequency-Domain Voltage-Current Expressions 

 
 The impedance 

Of course, we may choose to express impedance in either rectangular (Z = R + jX) or polar (Z = 

|Z|θ) form.  
In rectangular form, we can see clearly  

 The real part, which arises only from real resistances (R) 
 The imaginary component, termed the reactance, which arises from the energy storage 

elements (XL and XC).  
Both resistance and reactance have units of ohms, but reactance will always depend upon frequency. 
An ideal resistor has zero reactance; an ideal inductor or capacitor is purely reactive (i.e., 
characterized by zero resistance). 

 The admittance 
We define this quantity as the admittance Y of a circuit element or passive network, and it is simply 
the ratio of current to voltage:  

 The real part of the admittance is the conductance G.  
 The imaginary part is the susceptance B.  

All three quantities (Y, G, and B) are measured in siemens. 

𝑌 =  𝐺 +  𝑗𝐵 =  =    [1] 

  

Fig. 3.5. 
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3.2 Mesh and nodal ac analysis 
Example 3.1: Find the time-domain node voltages v1(t) and v2(t) in the circuit shown in Fig. 3.6. 

 
Fig. 3.6. 

Solution: 
Two current sources are given as phasors, and phasor node voltages V1 and V2 are indicated. At the 
left node we apply KCL, yielding: 

V1/5 + V1/−j10 + (V1 − V2)/−j5 + (V1 − V2)/j10 = 10◦ = 1 + j0 
At the right node, 

(V2 − V1)/−j5 + (V2 − V1)/j10 + V2/j5 + V2/10 = −(0.5−90◦) = j0.5 
Combining terms, we have 

(0.2 + j0.2)V1 − j0.1V2 = 1 
and 

−j0.1V1 + (0.1 − j0.1)V2 = j0.5 
These equations are easily solved on most scientific calculators, resulting in V1 = 1 − j2 V and V2 = 
−2 + j4 V. 
The time-domain solutions are obtained by expressing V1 and V2 in polar form: 

V1 = 2.24−63.4◦ 

V2 = 4.47116.6◦ 
and passing to the time domain: 

v1(t) = 2.24 cos(ωt − 63.4◦)   V 
v2(t) = 4.47 cos(ωt + 116.6◦)   V 
 

H.W.: Use nodal analysis on the circuit of Fig. 3.7 to find V1 and V2. 

 
Fig. 3.7. 
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Example 3.2: Obtain expressions for the time-domain currents i1 and i2 in the circuit given as Fig. 
3.8a. 

  
Fig. 3.8. 

Solution: 
Noting from the left source that ω = 103 rad/s, we draw the frequency domain circuit of Fig. 3.8b and 
assign mesh currents I1 and I2. 
Around mesh 1, 

3I1 + j4(I1 − I2) = 100◦ 
or 

(3 + j4)I1 − j4I2 = 10 
while mesh 2 leads to 

j4(I2 − I1) − j2I2 + 2I1 = 0 
or 

(2 − j4)I1 + j2I2 = 0 
Solving, 

I1 = (14 + j8)/13 = 1.2429.7◦  A 

I2 = (20 + j30)/13 = 2.7756.3◦  A 
Hence, 

i1(t) = 1.24 cos(103t + 29.7◦)   A 
i2(t) = 2.77 cos(103t + 56.3◦)   A 

 
H.W.: Use mesh analysis on the circuit of Fig. 3.9 to find I1 and I2. 

 
Fig. 3.9. 
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3.3 Superposition ac analysis 
Example 3.3: Use superposition to find V1 for the circuit of Fig. 3.10. 

 
Fig. 3.10. 

Solution: 
First we redraw the circuit as Fig. 3.10b, where each pair of parallel impedances is replaced by a 
single equivalent impedance.  

To find V1, we first activate only the left source and find the partial response, V1L. The 10◦ source 
is in parallel with an impedance of (4 − j2) // (−j10 + 2 + j4) 
so that 

𝑉  =  10° ( )( ) 
=   =  2 − 𝑗2 V 

With only the right source active, current division and Ohm’s law yield 

𝑉  =  −0.5 − 90°  (4 − 𝑗2)  =  −1  V 

Summing, then, 
V1 = V1L + V1R = 2 − j2 − 1 = 1 − j2  V 
 

H.W.: If superposition is used on the circuit of Fig. 3.11, find V1 with (a) only the 200◦ mA source 

operating; (b) only the 50−90◦ mA source operating. 

 
Fig. 3.11. 
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3.4 Thevenin and Norton ac analysis 
Example 3.4: Determine the Thévenin equivalent seen by the −j10 Ω impedance of Fig. 3.12a, and 
use this to compute V1. 

 
Fig. 3.12: (a) Circuit of Fig. 3.12 b. The Thévenin equivalent seen by the −j10 Ω impedance is 

desired. (b) Voc is defined. (c) Zth is defined. (d) The circuit is redrawn using the Thévenin equivalent. 

Solusion: 
The open-circuit voltage, defined in Fig. 3.12b, is 

Voc = (10◦)(4 − j2) − (−0.5−90◦)(2 + j4) 
= 4 − j2 + 2 − j1 = 6 − j3 V 

The impedance of the inactive circuit of Fig. 3.12c as viewed from the load terminals is simply the 
sum of the two remaining impedances. Hence, 

Zth = 6 + j2  Ω 
Thus, when we reconnect the circuit as in Fig. 3.12d, the current directed from node 1 toward node 2 
through the −j 10 Ω load is 

I12 = (6 − j3)/(6 + j2 − j10) = 0.6 + j0.3 A 
We now know the current flowing through the −j 10 Ω impedance of Fig. 3.12a. Note that we are 
unable to compute V1 using the circuit of Fig. 3.12d as the reference node no longer exists. Returning 
to the original circuit, then, and subtracting the 0.6 + j0.3 A current from the left source current, the 
downward current through the (4 − j2) Ω branch is found: 

I1 = 1 − 0.6 − j0.3 = 0.4 − j0.3     A 
and, thus,      V1 = (0.4 − j0.3)(4 − j2) = 1 − j2    V 
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H.W.: For the circuit of Fig. 3.13, find the (a) open-circuit voltage Vab; (b) downward current in a 
short circuit between a and b; (c) Thévenin equivalent impedance Zab in parallel with the current 
source. 

 
Fig. 3.13 

 

3.5 AC power calculation. 
3.5.1 INSTANTANEOUS POWER 
The instantaneous power delivered to any device is given by the product of the instantaneous voltage 
across the device and the instantaneous current through it (the passive sign convention is assumed). 
The instantaneous power delivered to the entire circuit in the sinusoidal steady state is, therefore, 

p(t) = v(t) i(t) = Vm Im cos(ωt + ) cos ωt 
which we will find convenient to rewrite in a form obtained by using the trigonometric identity for 
the product of two cosine functions. Thus, 

𝑝(𝑡) =
𝑉 𝐼

2
[cos(2𝜔𝑡 + 𝜙) + 𝑐𝑜𝑠𝜙] =

𝑉 𝐼

2
𝑐𝑜𝑠𝜙 +

𝑉 𝐼

2
cos(2𝜔𝑡 + 𝜙) 

The last equation possesses several characteristics that are true in general for circuits in the 
sinusoidal steady state. One term, the first is not a function of time; and a second term is included 
which has a cyclic variation at twice the applied frequency. Since this term is a cosine wave, and 
since sine waves and cosine waves have average values which are zero (when averaged over an 
integral number of periods), this example suggests that the average power is 1/2 Vm Im cos φ; as we 
will see shortly, this is indeed the case. 
 
3.5.2 AVERAGE POWER 
Now let us obtain the general result for the sinusoidal steady state. We assume the general sinusoidal 
voltage 

v(t) = Vm cos(ωt + θ) 
and current 

i(t) = Im cos(ωt + ) 
associated with the device in question. The instantaneous power is 

p(t) = Vm Im cos(ωt + θ) cos(ωt + ) 
Again expressing the product of two cosine functions as one-half the sum of the cosine of the 
difference angle and the cosine of the sum angle,  
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𝑝(𝑡) = cos (𝜃 − 𝜙) + cos(2𝜔𝑡 + 𝜃 + 𝜙)  [1] 

we may save ourselves some integration by an inspection of the result. 
The first term is a constant, independent of t. The remaining term is a cosine function; p(t) is 
therefore periodic, and its period is ½T. Note that the period T is associated with the given current 
and voltage, and not with the power; the power function has a period ½T. However, we may 
integrate over an interval of T to determine the average value if we wish; it is necessary only that we 
also divide by T. Our familiarity with cosine and sine waves, however, shows that the average value 
of either over a period is zero. There is thus no need to integrate Eq. [1] formally; by inspection, the 
average value of the second term is zero over a period T (or ½T), and the average value of the first 
term, a constant, must be that constant itself. Thus, 

𝑃 = cos (𝜃 − 𝜙)    [2] 

 
Example 3.5: Given the time-domain voltage v = 4 cos(πt/6) V, find both the average power and an 

expression for the instantaneous power that result when the corresponding phasor voltage V = 40° 

V is applied across an impedance Z = 260° Ω. 
Solution: 

The phasor current is VZ = 2−60◦ A, and so the average power is 
P = ½ (4)(2) cos 60◦ = 2  W 

We can write the time-domain voltage, 
v(t) = 4 cos(πt/6)  V 

and the time-domain current, 
i (t) = 2 cos(πt/6 − 60◦) A 

The instantaneous power, therefore, is given by their product: 
p(t) = 8 cos(πt/6)cos(πt/6 − 60◦) 
       = 2 + 4 cos(πt/3 − 60◦)  W 
 

H.W.: Given the phasor voltage V = 115√245◦ V across an impedance Z = 16.2619.3◦ Ω, obtain 
an expression for the instantaneous power, and compute the average power if ω = 50 rad/s. 
 
Note: The phase-angle difference between the current through and the voltage across a pure resistor 
is zero. Thus, 

PR = ½ Vm Im cos 0 = ½ Vm Im 
or 

PR = ½ I2
mR = V2

m/2R 
 
Note: The average power delivered to any device which is purely reactive (i.e., contains no resistors) 
must be zero. This is a direct result of the 90◦ phase difference which must exist between current and 

voltage; hence, cos(θ − ) = cos±90◦ = 0 and PX = 0 
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Example 3.6: Find the average power absorbed by each of the three passive elements in Fig. 3.14, as 
well as the average power supplied by each source. 

 
Fig. 3.14. 

Solution: 
The values of I1 and I2 are found by any of several methods, such as mesh analysis, nodal analysis, or 
superposition. They are 

I1 = 5 − j10 = 11.18−63.43◦   A 

I2 = 5 − j5 = 7.071−45◦   A 
The downward current through the 2 Ω resistor is 

I1 − I2 = −j5 = 5−90◦   A 
so that Im = 5 A, and the average power absorbed by the resistor is found most easily by: 

PR = ½ I2
mR = ½ (52)2 = 25   W 

The voltage 200◦ V and associated current I1 = 11.18−63.43◦ A satisfy the active sign convention, 
and thus the power delivered by this source is 

Pleft = ½ (20)(11.18) cos[0◦ − (−63.43◦)] = 50   W 
In a similar manner, we find the power absorbed by the right source using the passive sign 
convention, 

Pright = ½ (10)(7.071) cos(0◦ + 45◦) = 25    W 
Since 50 = 25 + 25, the power relations check. 
 
H.W.: For the circuit of Fig. 3.15, compute the average power delivered to each of the passive 
elements. Verify your answer by computing the power delivered by the two sources. 

 
Fig. 3.15 

Maximum Power Transfer 
An independent voltage source in series with an impedance Zth 
or an independent current source in parallel with an impedance 
Zth delivers a maximum average power to that load impedance 
ZL which is the conjugate of Zth, or ZL = Z∗th.  
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Example 3.7: A particular circuit is composed of the series combination of a sinusoidal voltage 
source 3 cos(100t − 3°) V, a 500 Ω resistor, a 30 mH inductor, and an unknown impedance. If we 
are assured that the voltage source is delivering maximum average power to the unknown 
impedance, what is its value? 

 
Fig. 3.16 

Solution: 
The phasor representation of the circuit is sketched in Fig. 3.16. The circuit is easily seen as an 

unknown impedance Z? in series with a Thevenin equivalent consisting of the 3−3◦ V source and a 
Thevenin impedance 500 + j3 Ω. 
Since the circuit of Fig. 3.16 is already in the form required to employ the maximum average power 
transfer theorem, we know that maximum average power will be transferred to an impedance equal 
to the complex conjugate of Zth, or Z? = Z∗th = 500 − j3 Ω 
This impedance can be constructed in several ways, the simplest being a 500 Ω resistor in series with 
a capacitor having impedance −j3 Ω. Since the operating frequency of the circuit is 100 rad/s, this 
corresponds to a capacitance of 3.333 mF. 
 
H.W.: If the 30 mH inductor of Example 3.7 is replaced with a 10 μF capacitor, what is the value of 
the inductive component of the unknown impedance Z? if it is known that Z? is absorbing maximum 
power? 
 
Use of RMS Values to Compute Average Power 
The average power delivered to an R ohm resistor by a sinusoidal current is 

P = ½ I2
mR 

Since Ieff = Im/√2, the average power may be written as 
P = Ieff

2
 R 

The other power expressions may also be written in terms of effective values: 

P = Veff Ieff cos(θ − ) 
P = Veff

2 /R 
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3.5.3 APPARENT POWER AND POWER FACTOR 
The product of the effective values of the voltage and current is not the average power; we define it 
as the apparent power.  
  P = Veff Ieff 
Dimensionally, apparent power must be measured in the same units as real power, since cos(θ − φ) is 
dimensionless; but in order to avoid confusion, the term volt-amperes, or VA, is applied to the 
apparent power. 
Since cos(θ − φ) cannot have a magnitude greater than unity, the magnitude of the real power can 
never be greater than the magnitude of the apparent power. 
The ratio of the real or average power to the apparent power is called the power factor, symbolized 
by PF. Hence, 

PF = average power/apparent power = Veff Ieff cos(θ − )/Veff Ieff = cos(θ − )  

In the sinusoidal case, the power factor is simply cos(θ − ), where (θ − ) is the angle by which the 

voltage leads the current. This relationship is the reason why the angle (θ − ) is often referred to as 
the PF angle. 

For a purely resistive load, the voltage and current are in phase, (θ − ) is zero, and the PF is unity. 
 
Example 3.8: Calculate values for the average power delivered to each of the two loads shown in 
Fig. 3.17, the apparent power supplied by the source, and the power factor of the combined loads. 

 
Fig. 3.17 

Solution: 
We require Ieff: 

I = 600o/(3 + j4) = 12−53.13◦  A rms 
so Ieff  = 12  A rms, and  ang I = −53.13◦. 
The average power delivered to the top load is given by 

Pupper = I2
effRtop = (12)2(2) = 288 W 

and the average power delivered to the right load is given by 
Plower = I2

effRright = (12)2(1) = 144 W 
The source itself supplies an apparent power of Veff Ieff = (60)(12) = 720 VA. 
Finally, the power factor of the combined loads is found by considering the voltage and current 
associated with the combined loads. 
  PF = P/Veff Ieff = (Pupper + Plower )/Veff Ieff = 432/(60*12) = 0.6 lagging 
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H.W.: For the circuit of Fig. 3.18, determine the 
power factor of the combined loads if ZL = 10 Ω. 

 
 

Fig. 3.18 

 

3.5.4 COMPLEX POWER 
In this section, we define complex power to allow us to calculate the various contributions to the 
total power in a clean, efficient fashion. The magnitude of the complex power is simply the apparent 
power. The real part is the average power and—as we are about to see—the imaginary part is a new 
quantity, termed the reactive power, which describes the rate of energy transfer into and out of 
reactive load components (e.g., inductors and capacitors). 
If we first inspect the polar or exponential form of the complex power, 

S = Veff Ieff e j (θ−) 

we see that the magnitude of S, VeffIeff, is the apparent power. The angle of S, (θ −), is the PF angle 
(i.e., the angle by which the voltage leads the current). 
In rectangular form, we have 

S = P + jQ 

P = Veff Ieff cos(θ−)  average power 

Q = Veff Ieff sin(θ−)  reactive power 
 

 
 
Example 3.9: An industrial consumer is operating a 50 kW (67.1 hp) induction motor at a lagging 
PF of 0.8. The source voltage is 230 V rms. In order to obtain lower electrical rates, the customer 
wishes to raise the PF to 0.95 lagging. Specify a suitable solution. 
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Solution: 
The complex power supplied to the induction motor must have a real part of 50 kW and an angle of 
cos−1(0.8), or 36.9°. Hence, 

S1 = 5036.9◦/0.8 = 50 + j37.5  kVA 
In order to achieve a PF of 0.95, the total complex power must become 

S = S1 + S2 = (50/0.95)cos−1(0.95) = 50 + j16.43   kVA 
Thus, the complex power drawn by the corrective load is 

S2 = −j21.07   kVA 
The necessary load impedance Z2 may be found in several simple steps. We select a phase angle of 
0° for the voltage source, and therefore the current drawn by Z2 is 

I2
* = S2/V = −j21,070/230 = −j91.6   A 

or 
I2 = j91.6   A 

Therefore, 
Z2 = V/I2 = 230/j91.6 = −j2.51 Ω 

If the operating frequency is 60 Hz, this load can be provided by a 1056 μF capacitor connected in 
parallel with the motor. However, its initial cost, maintenance, and depreciation must be covered by 
the reduction in the electric bill. 
 
H.W.: For the circuit shown in Fig. 3.19, find the complex power absorbed by the (a) 1 Ω resistor; 
(b) −j10 Ω capacitor; (c) 5 + j10 Ω impedance; (d) source. 

 
3.19 

H.W.: A 440 V rms source supplies power to a load ZL = 10 + j2 Ω through a transmission line 
having a total resistance of 1.5 Ω. Find (a) the average and apparent power supplied to the load; (b) 
the average and apparent power lost in the transmission line; (c) the average and apparent power 
supplied by the source; (d) the power factor at which the source operates. 
  


